Epidemic spreading in networks with nonrandom long-range interactions.
نویسندگان
چکیده
An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.
منابع مشابه
Modeling Epidemics with Dynamic Small-World Networks
In this presentation a minimal model for describing the spreading of an infectious disease, such as influenza, is discussed. Here it is assumed that spreading takes place on a dynamic small-world network comprising shortand long-range infection events. Approximate equations for the epidemic threshold as well as the spreading dynamics are derived and they agree well with numerical discrete time-...
متن کاملEpidemic Variability in Hierarchical Geographical Networks with Human Activity Patterns
Recently, some studies have revealed that non-Poissonian statistics of human behaviors stem from the hierarchical geographical network structure. On this view, we focus on epidemic spreading in the hierarchical geographical networks and study how two distinct contact patterns (i.e., homogeneous time delay (HOTD) and heterogeneous time delay (HETD) associated with geographical distance) influenc...
متن کاملEpidemic dynamics and endemic states in complex networks.
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epid...
متن کاملLong-range epidemic spreading with immunization
We study the phase transition between survival and extinction in an epidemic process with long-range interactions and immunization. This model can be viewed as the well-known general epidemic process (GEP) in which nearestneighbor interactions are replaced by Levy flights over distances r which are distributed as P (r) ∼ r. By extensive numerical simulations we confirm previous fieldtheoretical...
متن کاملModelling development of epidemics with dynamic small-world networks.
We discuss the dynamics of a minimal model for spreading of infectious diseases, such as various types of influenza. The spreading takes place on a dynamic small-world network and can be viewed as comprising short- and long-range spreading processes. We derive approximate equations for the epidemic threshold as well as the spreading dynamics, and show that there is a good agreement with numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2011